Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Iman Emam Omar Gomaa

Iman Emam Omar Gomaa

German University in Cairo, Egypt

Title: Chlorophyllin derivatives mediated PDT: A new ray of hope in the horizon for cancer treatment

Biography

Biography: Iman Emam Omar Gomaa

Abstract

Photodynamic therapy (PDT) is an approved clinical treatment with minimal invasiveness for different types of cancers. It has the advantage of high selectivity towards tumor tissue and lack of severe and systemic complications with the possibility of harmless repetitive applications. Its mechanism of action involves activation of a photosensitizer (PS) by an appropriate monochromatic light source with long wavelength for deeper tissue penetration. Chlorophylls are photosynthetic pigments present in all organisms that convert light energy into chemical energy. The tetrapyrrolic ring structure of chlorophylls show high level of light absorption in the red region of visible light, activation of chlorophyllin derivatives results into generation of Reactive Oxygen Species (ROS) that cause tumor cells toxicity and subsequent tumor regression. Therefore, PDT has been used for targeting several accessible tumors. It has been also used in treatment of precancerous and cancerous dermatological diseases. In our studies, we were able to prove the distinctive role of chlorophyllin derivatives as highly efficient photosensitizers at both in vitro and in vivo PDT approaches. In comparison to the conventional chemotherapeutic drugs, no major alterations to the normal physiological condition have been detected. Additionally, successful PDT approaches in tumor cells killing were also achieved via liposomal delivery system of chlorophyllin derivatives. Mechanisms underlying PDT mediated tumor cells killing and in vivo tumor regression have been also investigated. Attempts towards the development of an efficient drug delivery system for improved tissue permeation, has been also conducted in an established murine tumor model for possible future clinical applications.